US009459870B2

a2 United States Patent

Otomo et al.

US 9,459,870 B2
Oct. 4, 2016

(10) Patent No.:
45) Date of Patent:

(54) DATA PROCESSOR (56) References Cited
(71) Applicant: FUJITSU LIMITED, Kawasaki-shi, U.S. PATENT DOCUMENTS
Kanagawa (IP) 7,032,099 B1* 4/2006 Imamura GO6F 9/52
712/29
(72) Inventors: Toshiya Otomo, Kawasaki (JP); 8,464,035 B2* 6/2013 DiXon GOGF 1/3203
Koichiro Yamashita, Hachioji (JP); 713/1
Takahisa Suzuki Yokohama (JP) 8,688,883 B2 * 4/2014 Guddeti GO6F 13/24
, S, ? 710/260
Hiromasa Yamauchi, Usakos (NA); 2010/0299541 Al 11/2010 Tshikawa et al.
Koji Kurihara, Kawasaki (JP); Yuta
Teranishi, Kawasaki (JP) FOREIGN PATENT DOCUMENTS
(73) Assignee: FUJITSU LIMITED, Kawasaki (JP) P 03-028957 2/1991
Jp 05-189247 7/1993
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent is extended or adjusted under 35
U.S.C. 154(b) by 186 days. OTHER PUBLICATIONS
(21) Appl. No.: 14/499,334 Notification of Transmittal of Translation of the International Pre-
liminary Report on Patentability (Form PCT/IB/338, Form PCT/
22) Filed: Sep. 29, 2014 IB/373 & Form PCT/ISA/237), PCT/JP2012/058652, 8 pages, dated
(22) p- 29,
Oct. 9, 2014.
(65) Prior Publication Data (Continued)
US 2015/0019837 Al Jan. 15, 2015 Primary Examiner — Eric Coleman
(74) Attorney, Agent, or Firm — Fujitsu Patent Center
Related U.S. Application Data (57) ABSTRACT
(63) Continuation of application No. PCT/JP2012/ A data processor includes: a plurality of controllers that
058652. filed on Mar. 30. 2012. process data; a program memory that stores a standby
’ ’ instruction and a data processing instruction at a plurality of
(51) Int. CL addresses respectively; and a queue that stores different
GO6F 9/30 (2006.01) execution start addresses for the plurality of controllers,
GO6F 9/34 (2006.01) wherein after the plurality of controllers sequentially access
GO6F 157167 (2006.01) the queue, the plurality of controllers acquire the different
(52) US.CL execution start addresses from the queue in an order of the
CPC ... GOGF 9/30043 (2013.01); GOG6F 9/30 sequential access, start execution of instructions from the
(2013.01); GOGF 9/30036 (201’3.01). GO6F acquired different execution start addresses in the program
9/34 (é013.01). GO6F 15/167 (2613.01) memory, and execute the data processing instruction and
(58) Field of Classification Se a’r ch execute the standby instruction the number of times different

None
See application file for complete search history.

for each of the controllers.

8 Claims, 6 Drawing Sheets

FRST MU | | SEcop we |

| THIRD MCU

| 0x00 [QUELE READ

JUMP_INSTRUCTION

| 0x20
i 0x30
| Ox40

STANDBY INSTRUCTION
STANDBY INSTRUCTION

SAMPLING
PROCESIING

STANDBY INSTRUCTION
JUMP_INSTRUCTION

212

US 9,459,870 B2

Page 2
(56) References Cited Jp 2011-233071 112011
FOREIGN PATENT DOCUMENTS OTHER PUBLICATIONS
1P 11-031068 2/1999 International Search Report, mailed in connection with PCT/
Jp 11-045209 2/1999 JP2012/058652 and mailed Jul. 3, 2012.
Jp 2000-163119 6/2000
Jp 2010-271930 12/2010 * cited by examiner

U.S. Patent Oct. 4, 2016 Sheet 1 of 6 US 9,459,870 B2
FI1G 1
SENSR =112 ~_P1
POWER H 111
GENERATION UNIT
101
~D1 o, 13
114 s ¢ $
GROUP PMU
~D2
A~ 15 P3
L T RF
FIG 2
o 201 202 203
.| FIRST MCU SECOND MCU THIRD MCU |
| 211 i
; Ox00 QUEUE READ QUEVE |
: JOMP INSTRUCTION z i
: 13 ~114
- 0x20_ISTANDBY INSTRUCTION j
. 0x30"[STANDBY INSTRUCTION |
' Ox40 919 (
; SAMPLING 3
| PROCESSING |
| STANDBY INSTRUCTION f
| JOMP INSTRUCTION ;

NON GYIHL

US 9,459,870 B2

dSH LS H 845 H 6dS [¢dS

Sheet 2 of 6

6ldS H9LdS HELdS HOLdS H 4dS H ¥dS H LIS [———— NON ONOIIS

Oct. 4, 2016

U.S. Patent

~ JgldsHsidsHzids H 6ds H 9ds H ¢ds H 0ds —— now 1Su
6ldS| | iSidSi | ludsi | st | oigdsi ||
AN A A
. A B Lo LT
ghdsiolfis vhdsizidls okds! sds WS i vds ZWs | ods
oA N

L1dS ¢ldS 6dS SdS LdS

¢ Ol4

U.S. Patent Oct. 4, 2016 Sheet 3 of 6 US 9,459,870 B2

FIG. 4
| CONTROL PART o401
ENTRY NUMBER 0 0x40 403
| ENTRY NUMBER 1 0x30 402 | OFFSET |
| X REGISTER |
| ENTRY NUMBER 2 0x20 ;

1
1

1
e e e e o e e e e o e e e e e e e e e 2+ e a2t e e e n e e o h e e e J

US 9,459,870 B2

Sheet 4 of 6

Oct. 4, 2016

U.S. Patent

111

AT

| YALSHIY 14vd

| 135440 19V¥01S

_ cop T A el L~ 1L

| L4¥d T04LNCD

| Loy ™ EEy ASONIN WYH904d

do AOV1S Nd) AIVLS Ndo AVIS
- 05| Ty 208 o/ 208 "ozt
| \ NOW QYL \ NIN ONOD3S 7 NN 1Sy
“ D o~ > P D) ~
T ¢0c¢ 198 ¢0¢ e LOC
BT
T2
_‘ .
vil G 914

US 9,459,870 B2

Sheet 5 of 6

Oct. 4, 2016

U.S. Patent

— — I
a3 ML ML INL
ONIRELI0 CINRILIONG, | |aINIRIL0R
404 A9 ONYLS 404 AG GNVLS| | [M04 Ag ONVLS
o~ o~
YS9 G29S G19s 5
135490 G09S
ININIHONT
cogs T INISST004d INISSI00¥d INISSI004d
ONTTAYS INTIAAYS ONTTAIVS
:mz 0L L4¥d JQ¥301S ¥29S—~ y195~ 4
N CIMVA GIQVOTRBNON feszeescoe , ¥09S
Ezm/w,\ INIINOD LINGNYAL N s R T T
789S JONREEN T [ovmand] |oNIRBLE0RN~ £09S
Vo £Z9S 404 AG GNVLS (404 AG VLS|, [¥04 A8 ONVS
S M_ !
135490
oo mmmm%/ ST SSMAV
1295 Teesd Q0T | e @m0 T+ Gvo1 -209S
7295~4 OL dWF | Z19S~ oL dnnr oL dnnr
14vIS IR e bttt T
NIN e T
30300 W4 | . [30300 Woud | . 33D Mo
“-e-—---1 7 SSRIOQY —--{TsSpoaY | - SSaQy f~-L09S
1295~ (V01 1195~ av0T Vo1
14V1S LVIS LV1S
MO HL-N A CRES RIS g o) T 4

US 9,459,870 B2

Sheet 6 of 6

Oct. 4, 2016

U.S. Patent

: NOTLONYLSNT dOLS | 44x0
cOv o C1Z
5 W NOLLONRLSNT JiT
> 02X0 2 WINON AMLND
YISO | ONISSIO0Nd
135440 0£X0 | MIGANN AN | ONTTANYS
m cle™ 0%0
070 0 YIBAON AYINT | NOLLOMALSNT AEWVLS| ogxo
: NOILONYLSNI ASONVLS| ozxo
_me "
: NOTLONYLSNT dwne
Ldvd 10dINOJ m W I 00%0

NI HL¥NO4
vz ™

NOW QAL

coz ™

L 014

NOW NI
2077

MR 1541

10z~

US 9,459,870 B2

1
DATA PROCESSOR

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a continuation application of Interna-
tional Application PCT/JP2012/058652 filed on Mar. 30,
2012 and designated the U.S., the entire contents of which
are incorporated herein by reference.

FIELD

The embodiments discussed herein are directed to a data
processor.

BACKGROUND

There is a known reset vector switching method of
preparing at least two external pins operated for instructing
to reset hardware and start boot access from a predetermined
address, selectively operating the external pins to read a
reset vector address corresponding to the external pin, and
starting the boot access from the address (refer to, for
example, Patent Document 1).

PRIOR ART DOCUMENT
Patent Document

[Patent Document 1] Japanese Laid-open Patent Publica-
tion No. 11-31068

In the case of processing in parallel the sampling pro-
cessings using a multiprocessor, it is necessary to shift
processing start timings of processors by a sampling period.
In this case, the above-described processings can be imple-
mented by synchronizing the processors using a sophisti-
cated hardware managing mechanism such as an operating
system (OS) and starting the processings after standing by
for a sampling period. However, the implementation method
is made on the assumption of hardware resources to the
extent that the OS operates.

SUMMARY

A data processor includes: a plurality of controllers that
process data; a program memory that stores a standby
instruction and a data processing instruction at a plurality of
addresses respectively; and a queue that stores different
execution start addresses for the plurality of controllers,
wherein after the plurality of controllers sequentially access
the queue, the plurality of controllers acquire the different
execution start addresses from the queue in an order of the
sequential access, start execution of instructions from the
acquired different execution start addresses in the program
memory, and execute the data processing instruction and
execute the standby instruction the number of times different
for each of the controllers.

The object and advantages of the invention will be
realized and attained by means of the elements and combi-
nations particularly pointed out in the claims.

It is to be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory and are not restrictive of the inven-
tion.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a diagram illustrating a configuration example of
a data processor according to a first embodiment;

10

15

20

25

40

45

55

65

2

FIG. 2 is a diagram illustrating a configuration example of
an MCU group in FIG. 1;

FIG. 3 is a timing chart illustrating processing examples
of a first MCU, a second MCU, and a third MCU in FIG. 2;

FIG. 4 is a diagram illustrating a configuration example of
a queue in FIG. 2;

FIG. 5 is a diagram illustrating a configuration example of
the MCUs in FIG. 2;

FIG. 6 is a flowchart illustrating processing examples of
the first MCU to an N-th MCU and the queue; and

FIG. 7 is a diagram illustrating a configuration example of
an MCU group according to a second embodiment.

DESCRIPTION OF EMBODIMENTS
First Embodiment

FIG. 1 is a diagram illustrating a data processor 101
according to a first embodiment. A data processor 102 is a
master data processor (portable terminal), and the data
processor 101 is a slave data processor (sensor node). The
data processor 101 has a sensor 112 and can wirelessly
transmit sensing data to the data processor 102.

The data processor 101 has a power generation unit 111,
the sensor 112, a power management unit (PMU) 113, a
micro controller unit (MCU) group 114, and a radio fre-
quency (RF) circuit 115.

The power generation unit 111 is, for example, an envi-
ronment power generation (energy harvester) unit which
converts natural energy into power P1 and outputs the power
P1 to the PMU 113. Here, the natural energy is solar energy,
radio wave energy of a cellular phone or the like, tempera-
ture difference energy or the like. The power generation unit
111 uses the natural energy, and can thus generate merely
low power P1 and generate, for example, power at a voltage
of 2 to 3 V at peak-to-peak and several tens pW.

The sensor 112 detects various kinds of sensing data D1
and outputs the sensing data D1 to the MCU group 114. For
example, the sensor 112 detects temperature or detects
components of a ratio wave or the like. Note that the sensor
112 may be integrated with the power generation unit 111 or
separated from the power generation unit 111.

The PMU 113 receives input of the power P1 supplied
from the power generation unit 111 and manages power P2
to be supplied to the MCU group 114 and power P3 to be
supplied to the RF circuit 115. For example, when a prede-
termined condition is satisfied, the PMU 113 supplies the
power P2 and the power P3 to the MCU group 114 and the
RF circuit 115 respectively.

The MCU group 114 has a plurality of MCUs which
process the sensing data D1 and output transmission data D2
to the RF circuit 115. For example, the MCU group 114
samples analog sensing data D1 to generate digital trans-
mission data D2.

The RF circuit 115 converts the transmission data D2 into
a radio-frequency signal and wirelessly transmits the high-
frequency signal to the data processor 102.

FIG. 2 is a diagram illustrating a configuration example of
the MCU group 114 in FIG. 1. The MCU group 114 has a
first MCU 201, a second MCU 202, a third MCU 203, a bus
211, a program memory 212 and a queue 213. As described
above, the power that the power generation unit 111 can
generate is limited power. To achieve a target processing
performance under such a situation, the data processor 101
has a microprocessor configuration with a high power per-
formance ratio. The microprocessor configuration has a
plurality of MCUs 201 to 203.

US 9,459,870 B2

3

FIG. 3 is a timing chart illustrating processing examples
of the first MCU 201, the second MCU 202, and the third
MCU 203 in FIG. 2. The first MCU 201, the second MCU
202, and the third MCU 203 perform parallel processing to
sample the analog sensing data D1 in a desired sampling
period of T and generate the transmission data D2.

The first MCU 201 starts the sampling processing from a
sampling point SPO of the analog sensing data D1. The
second MCU 202 starts the sampling processing from a
sampling point SP1 of the analog sensing data D1. The
sampling point SP1 is a sampling point at a timing delayed
by a time of T from the sampling point SP0. The third MCU
203 starts the sampling processing from a sampling point
SP2 of the analog sensing data D1. The sampling point SP2
is a sampling point at a timing delayed by the time of T from
the sampling point SP1.

The first MCU 201 samples the analog sensing data D1 in
a sampling period of 3xT at sampling points SP0, SP3, SP6,
SP9, SP12, SP15 and SP18.

The second MCU 202 samples the analog sensing data D1
in a sampling period of 3xT at sampling points SP1, SP4,
SP7, SP10, SP13, SP16 and SP19.

The third MCU 203 samples the analog sensing data D1
in a sampling period of 3xT at sampling points SP2, SP5,
SP8, SP11, SP14, and SP17.

As a result, the MCU group 114 can generate data at the
20 sampling points SP0 to SP19 as the transmission data D2.
The sampling period of the 20 sampling points SP0 to SP19
is T.

As described above, the first MCU 201, the second MCU
202, and the third MCU 203 can perform the parallel
processing to sample the analog sensing data D1 in the
desired sampling period of T and generate the transmission
data D2.

The sampling processing timings of the first MCU 201,
the second MCU 202, and the third MCU 203 are mutually
shifted by the time of T. A method of shifting the sampling
processing timing by the time of T will be described below.

The shift by the time of T is made possible by using
hardware for measuring time or software of performing
synchronous processing. However, this method requires a
complicated hardware configuration or a large storage
capacity of a memory for storing complicated software. This
method can be realized by a relatively large data processor
such as a smartphone or the like having an operating
frequency of 1 GHz or more, a power consumption of about
1 W, and a die size of a semiconductor chip of 100 to several
hundreds mm?.

However, the data processor 101 in FIG. 1 uses the power
generation unit 111 for the natural energy and is thus a
relatively micro-miniature data processor having an operat-
ing frequency of several tens MHz, a power consumption of
several tens pW, and a die size of a semiconductor chip of
several tens mm?. In the data processor 101, the method of
using the above-described complicated hardware or compli-
cated software cannot be employed. Hereinafter, a method of
shifting the processings by the first MCU 201, the second
MCU 202, and the third MCU 203 by the sampling period
of T with a simple configuration will be described.

In FIG. 2, the program memory 212 stores a queue read
instruction at an address No. 0 (hexadecimal number), stores
a jump instruction at an address next thereto, stores a
standby instruction at an address No. 20 (hexadecimal
number), stores a standby instruction at an address No. 30
next thereto, stores a sampling processing (data processing)
instruction at an address No. 40 (hexadecimal number) next
thereto, stores a standby instruction at an address next

20

25

30

40

45

50

55

4

thereto, and stores a “instruction to jump to No. 40 (hexa-
decimal number)” at an address next thereto. The first MCU
201, the second MCU 202, and the third MCU 203 share the
one program memory 212, thereby making it possible to
reduce the capacity of the program memory 212.

FIG. 4 is a diagram illustrating a configuration example of
the queue 213 in FIG. 2. The queue 213 has a control part
401, a storage part 402, and an offset register 403. The
storage part 402 is a nonvolatile memory that stores different
execution start addresses for the plurality of MCUs 201 to
203 at a plurality of entry numbers “0” to “2”. Depending on
the order of the MCUs 201 to 203 accessing the queue 213,
the execution start addresses at which entry numbers “0” to
“2” are decided to be allocated to the MCUs 201 to 203
respectively. For example, a first execution start address No.
“40” (hexadecimal number) is stored at the entry number
“0”, a second execution start address No. “30” (hexadecimal
number) is stored at the entry number “1”, and a third
execution start address No. “20” (hexadecimal number) is
stored at the entry number “2”. The offset register 403 is a
nonvolatile memory that stores one of the entry numbers “0”
to “2” in the storage part 402.

FIG. 5 is a diagram illustrating a configuration example of
the MCUs 201 to 203 in FIG. 2. Each of the MCUs 201 to
203 has an input/output (I/O) circuit 501, a central process-
ing unit (CPU) 502, and a stack memory 503. The input/
output circuit 501 receives input of the sensing data D1
supplied from the sensor 112, and outputs the sensing data
D1 to the central processing unit 502. The stack memory 503
is a working memory area of the central processing unit 502.
The central processing unit 502 executes the instruction
stored in the program memory 212 using the stack memory
503, to perform processing such as the sampling processing
(data processing) or the like in FIG. 3.

FIG. 6 is a flowchart illustrating processing examples of
the first MCU to an N-th MCU and the queue 213. Here-
inafter, the case where N is three will be described as an
example. When a predetermined condition is satisfied, the
PMU 113 supplies the power P2 to the MCU group 114 and
supplies the power P3 to the RF circuit 115. The predeter-
mined condition is, for example, a condition that the power
P1 generated by the power generation unit 111 becomes a
threshold value or more, the condition that the sensing data
D1 outputted from the sensor 112 falls within a predeter-
mined range or the like.

Each of the MCUs 201 to 203 is initialized at power ON,
and reads the instruction from the first address in the
program memory 212 and executes the instruction. In other
words, when the supply of the power P2 to the MCU group
114 is started, the first MCU 201, the second MCU 202, and
the third MCU 203 read the queue read instruction stored at
the address No. 0 (hexadecimal number) in the program
memory 212 at Steps S601, S611, S621 respectively, and
execute the queue read instruction. More specifically, the
first MCU 201, the second MCU 202, and the third MCU
203 read the execution start addresses stored in the queue
213. However, since there is only one queue 213, the first
MCU 201, the second MCU 202, and the third MCU 203
cannot read the execution start addresses at the same time
from the queue 213 but sequentially read the execution start
addresses in the access order. Namely, the MCUs 201 to 203
access the queue 213 at about the same time at power ON,
and the queue 213 sequentially responds to the accesses
from the MCUs 201 to 203.

The first MCU 201 executes, at Step S601, the queue read
instruction at the address No. 0 to access the queue 213 in
order to load the execution start address from the queue 213.

US 9,459,870 B2

5

The second MCU 202 also executes, at Step S611, the queue
read instruction at the address No. 0 to access the queue 213
in order to load the execution start address from the queue
213. The third MCU 203 also executes, at Step S621, the
queue read instruction at the address No. O to access the
queue 213 in order to load the execution start address from
the queue 213.

For example, a case where the control part 401 in the
queue 213 firstly accepts the access from the first MCU 201,
secondly accepts the access from the second MCU 202, and
thirdly accepts the access from the third MCU 203 will be
described as an example.

In this case, the control part 401 in the queue 213 firstly
accepts the aforementioned access from the first MCU 201.
Then, the control part 401 in the queue 213 loads, at Step
S631, the entry number stored in the offset register 403.
When the supply of the power P2 is started, the entry number
stored in the offset register 403 is initialized to the entry
number “0”. Accordingly, the control part 401 loads the
entry number “0” from the offset register 403, and loads
from the storage part 402 the first execution start address No.
“40” (hexadecimal number) stored at the loaded entry num-
ber “0” in the storage part 402, and transmits the first
execution start address No. “40” (hexadecimal number) to
the first MCU 201. The first MCU 201 receives, at Step
S601, the first execution start address No. “40” (hexadeci-
mal number) from the queue 213. Then, the control part 401
in the queue 213 increments, at Step S633, the entry number
in the offset register 403 from “0” to “1”.

Next, the control part 401 in the queue 213 accepts the
aforementioned access from the second MCU 202. Then, the
control part 401 in the queue 213 loads, at Step S631, the
entry number “1” stored in the offset register 403, loads from
the storage part 402 the second execution start address No.
“30” (hexadecimal number) stored at the loaded entry num-
ber “1” in the storage part 402, and transmits the second
execution start address No. “30” (hexadecimal number) to
the second MCU 202. The second MCU 202 receives, at
Step S611, the second execution start address No. “30”
(hexadecimal number) from the queue 213. Then, the con-
trol part 401 in the queue 213 increments, at Step S633, the
entry number in the offset register 403 from “1” to “2”.

Next, the control part 401 in the queue 213 accepts the
aforementioned access from the third MCU 203. Then, the
control part 401 in the queue 213 loads, at Step S631, the
entry number “2” stored in the offset register 403, loads from
the storage part 402 the third execution start address No.
“20” (hexadecimal number) stored at the loaded entry num-
ber “2” in the storage part 402, and transmits the third
execution start address No. “20” (hexadecimal number) to
the third MCU 203. The third MCU 203 receives, at Step
S621, the third execution start address No. “20” (hexadeci-
mal number) from the queue 213. Then, the control part 401
in the queue 213 increments, at Step S633, the entry number
in the offset register 403 from “2” to “3”.

When there are N MCUs 201 to 203, the same processing
as that described above is repeated up to the N-th MCU. As
described above, when sequentially accessed from the plu-
rality of MCUs 201 to 203, the control part 401 reads the
execution start address from the entry number, which is
stored in the offset register 403, in the storage part 402,
outputs the read execution start address to one of the
accessing MCUs 201 to 203, and overwrites the entry
number stored in the offset register 403 with a next entry
number. More specifically, when accessed from one of the
MCUs 201 to 203, the control part 401 increments the entry
number stored in the offset register 403.

10

15

20

25

30

35

40

45

50

55

60

65

6

The first MCU 201 executes, at Step S602, the jump
instruction at the address next to the “queue read instruc-
tion” in the program memory 212 to jump to the first
execution start address No. “40” (hexadecimal number)
loaded (received) at Step S601. Since the first execution start
address No. “40” (hexadecimal number) in the program
memory 212 is the sampling processing instruction and is
not the standby instruction, the first MCU 201 omits Step
S603 and proceeds from Step S602 to Step S604. Note that
Step S603 is the processing performed when the order of the
first MCU 201 accessing the queue 213 is the second or
thereafter. The first MCU 201 executes, at Step S604, the
sampling processing (data processing) instruction at the first
execution start address No. “40” (hexadecimal number) to
perform the sampling processing (data processing) at the
sampling point SP0 (FIG. 3) of the sensing data D1, and
outputs the transmission data D2 to the RF circuit 115. Then,
the first MCU 201 executes, at Step S605, the standby
instruction at the next address in the program memory 212
to stand by for a time of about 3xT in FIG. 3. Thereafter, the
first MCU 201 executes the “instruction to jump to No. 40
(hexadecimal number)” at the next address in the program
memory 212 to jump to No. 40 (hexadecimal number).
Then, the first MCU 201 returns to Step S604 and executes
the sampling processing (data processing) instruction at No.
40 (hexadecimal number) to perform the sampling process-
ing (data processing) at the sampling point SP3 (FIG. 3) of
the sensing data D1, and outputs the transmission data D2 to
the RF circuit 115. Then, the first MCU 201 executes, at Step
S605, the standby instruction at the next address in the
program memory 212 to stand by for a time of about 3xT in
FIG. 3. Thereafter, the first MCU 201 executes the “instruc-
tion to jump to No. 40 (hexadecimal number)” at the next
address in the program memory 212 to jump to No. 40
(hexadecimal number). Then, the first MCU 201 returns to
Step S604 and executes the sampling processing (data
processing) instruction at No. 40 (hexadecimal number) to
perform the sampling processing (data processing) at the
sampling point SP6 (FIG. 3) of the sensing data D1, and
outputs the transmission data D2 to the RF circuit 115.
Hereinafter, by repeating the same processing as described
above, the first MCU 201 performs the sampling processing
(data processing) at the sampling points SP9, SP12, SP15,
SP18 and so on (FIG. 3) of the sensing data D1, and outputs
the transmission data D2 to the RF circuit 115. As described
above, the first MCU 201 can perform the sampling pro-
cessing at the sampling points SP0, SP3, SP6, SP9, SP12,
SP15, SP18 and so on in a sampling period of 3xT.

The second MCU 202 executes, at Step S612, the jump
instruction at the address next to the “queue read instruc-
tion” in the program memory 212 to jump to the second
execution start address No. “30” (hexadecimal number)
loaded (received) at Step S611. Then, the second MCU 202
executes, at Step S613, the standby instruction at the second
execution start address No. “30” (hexadecimal number) to
stand by for a time of about 3xT in FIG. 3. Then, the second
MCU 202 executes, at Step S614, the sampling processing
(data processing) instruction at the next address No. “40”
(hexadecimal number) to perform the sampling processing
(data processing) at the sampling point SP1 (FIG. 3) of the
sensing data D1, and outputs the transmission data D2 to the
RF circuit 115. Then, the second MCU 202 executes, at Step
S615, the standby instruction at the next address in the
program memory 212 to stand by for a time of about 3xT in
FIG. 3. Thereafter, the second MCU 202 executes the
“instruction to jump to No. 40 (hexadecimal number)” at the
next address in the program memory 212 to jump to No. 40

US 9,459,870 B2

7

(hexadecimal number). Then, the second MCU 202 returns
to Step S614 and executes the sampling processing (data
processing) instruction at No. 40 (hexadecimal number) to
perform the sampling processing (data processing) at the
sampling point SP4 (FIG. 3) of the sensing data D1, and
outputs the transmission data D2 to the RF circuit 115. Then,
the second MCU 202 executes, at Step S615, the standby
instruction at the next address in the program memory 212
to stand by for a time of about 3xT in FIG. 3. Thereafter, the
second MCU 202 executes the “instruction to jump to No.
40 (hexadecimal number)” at the next address in the pro-
gram memory 212 to jump to No. 40 (hexadecimal number).
Then, the second MCU 202 returns to Step S614 and
executes the sampling processing (data processing) instruc-
tion at No. 40 (hexadecimal number) to perform the sam-
pling processing (data processing) at the sampling point SP7
(FIG. 3) of the sensing data D1, and outputs the transmission
data D2 to the RF circuit 115. Hereinafter, by repeating the
same processing as described above, the second MCU 202
performs the sampling processing (data processing) at the
sampling points SP10, SP13, SP16, SP19 and so on (FIG. 3)
of the sensing data D1, and outputs the transmission data D2
to the RF circuit 115. As described above, the second MCU
202 can perform the sampling processing at the sampling
points SP1, SP4, SP7, SP10, SP13, SP16, SP19 and so on in
a sampling period of 3xT.

The third MCU 203 executes, at Step S622, the jump
instruction at the address next to the “queue read instruc-
tion” in the program memory 212 to jump to the third
execution start address No. “20” (hexadecimal number)
loaded (received) at Step S621. Then, the third MCU 203
executes, at Step S623, the standby instruction at the third
execution start address No. “20” (hexadecimal number) to
stand by for a time of about T in FIG. 3, and executes the
standby instruction at the next address No. “30” (hexadeci-
mal number) to stand by for a time of about T in FIG. 3.
Namely, the third MCU 203 stands by for a time of about
2xT in FIG. 3 at Step S623. Then, the third MCU 203
executes, at Step S624, the sampling processing (data pro-
cessing) instruction at the next address No. “40” (hexadeci-
mal number) to perform the sampling processing (data
processing) at the sampling point SP2 (FIG. 3) of the sensing
data D1, and outputs the transmission data D2 to the RF
circuit 115. Then, the third MCU 203 executes, at Step S625,
the standby instruction at the next address in the program
memory 212 to stand by for a time of about 3xT in FIG. 3.
Thereatfter, the third MCU 203 executes the “instruction to
jump to No. 40 (hexadecimal number)” at the next address
in the program memory 212 to jump to No. 40 (hexadecimal
number). Then, the third MCU 203 returns to Step S624 and
executes the sampling processing (data processing) instruc-
tion at No. 40 (hexadecimal number) to perform the sam-
pling processing (data processing) at the sampling point SP5
(FIG. 3) of the sensing data D1, and outputs the transmission
data D2 to the RF circuit 115. Then, the third MCU 203
executes, at Step S625, the standby instruction at the next
address in the program memory 212 to stand by for a time
of about 3xT in FIG. 3. Thereafter, the third MCU 203
executes the “instruction to jump to No. 40 (hexadecimal
number)” at the next address in the program memory 212 to
jump to No. 40 (hexadecimal number). Then, the third MCU
203 returns to Step S624 and executes the sampling pro-
cessing (data processing) instruction at No. 40 (hexadecimal
number) to perform the sampling processing (data process-
ing) at the sampling point SP8 (FIG. 3) of the sensing data
D1, and outputs the transmission data D2 to the RF circuit
115. Hereinafter, by repeating the same processing as

10

15

20

25

30

35

40

45

50

55

60

65

8

described above, the third MCU 203 performs the sampling
processing (data processing) at the sampling points SP11,
SP14, SP17 and so on (FIG. 3) of the sensing data D1, and
outputs the transmission data D2 to the RF circuit 115. As
described above, the third MCU 203 can perform the sam-
pling processing at the sampling points SP2, SP5, SP8, S11,
SP14, SP17 and so on in a sampling period of 3xT.

As described above, the MCU group 114 can perform the
sampling processing at the sampling points SP0 to SP19 and
so on in the sampling period of T by the parallel processing
by the plurality of MCUs 201 to 203. The plurality of MCUs
201 to 203 are mutually the same in the period of 3xT of
repeatedly executing the sampling processing (data process-
ing) instruction. The MCU group 114 repeats the above-
described processing until the supply of the power P2 ends.
Note that the number N of the MCUs 201 to 203 is not
limited to three but may be two or more.

After sequentially accessing the queue 213, the plurality
of MCUs 201 to 203 receive input of different execution
start addresses from the queue 213 in the order of the
sequential access, start execution of the instructions from the
inputted different execution start addresses in the program
memory 212, and repeatedly execute the sampling process-
ing (data processing) instruction and the standby instruc-
tions. The plurality of MCUs 201 to 203 have mutually
different timings to execute the sampling processing (data
processing) instruction which are shifted from one another
by the time of T.

The plurality of MCUs 201 to 203 are mutually different
in the number of the standby instructions existing from the
above-described different execution start addresses to the
sampling processing (data processing) instruction. For
example, the number of the standby instructions of the first
MCU 201 is 0, the number of the standby instructions of the
second MCU 202 is 1, and the number of the standby
instructions of the third MCU 203 is 2.

The first MCU 201 starts execution from the sampling
processing (data processing) instruction stored at the first
execution start address No. “40”.

The second MCU 202 starts execution from the standby
instruction stored at the second execution start address No.
“30” and then executes the sampling processing (data pro-
cessing) instruction stored at the first execution start address
No. “40” being the address next to the second execution start
address No. “30”.

The third MCU 203 starts execution from the standby
instruction stored at the third execution start address No.
“20”, then executes the standby instruction stored at the
second execution start address No. “30” being the address
next to the third execution start address No. “20”, and then
executes the sampling processing (data processing) instruc-
tion stored at the first execution start address No. “40” being
the address next to the second execution start address No.
“307.

According to this embodiment, it is possible to shift the
processings by the MCUs 201 to 203 by the time of T with
a simple configuration without using complicated hardware
or complicated software to make the timings for the MCUs
201 to 203 to execute the sampling processing (data pro-
cessing) instruction different.

This makes it possible to reduce the hardware resources,
reduce the number of instructions to be stored in the program
memory 212, and shift the sampling processings (data
processings) of the MCUs 201 to 203 by desired timing.

US 9,459,870 B2

9

Further, since the queue 213 is accessed only at startup,
the power consumption can be suppressed by turning off the
power supply after it is accessed from all of the MCUs 201
to 203.

Second Embodiment

FIG. 7 is a diagram illustrating a configuration example of
an MCU group 114 according to a second embodiment.
Hereinafter, the points that this embodiment is different from
the first embodiment will be described. A fourth MCU 204
has the same configuration as those of the MCUs 201 to 203,
and is connected to the bus 211. In this embodiment, the
number of required MCUs is three, but four MCUs 201 to
204 are provided taking into account fault tolerance. The
program memory 212 stores a stop instruction at a fourth
execution address No. “FF” (hexadecimal number). The
storage part 402 in the queue 213 stores the fourth execution
address No. “FF” (hexadecimal number) at an entry number
“3”. For example, when the supply of the power P2 is
started, the MCUs 201 to 204 access the queue 213 at about
the same time as in the first embodiment. For example, the
control part 401 in the queue 213 firstly accepts the access
from the first MCU 201, secondly accepts the access from
the second MCU 202, thirdly accepts the access from the
third MCU 203, and fourthly accepts the access from the
fourth MCU 204. In this case, the processings by the MCUs
201 to 203 are the same in those of the first embodiment.
Hereinafter, the processing by the fourth MCU 204 will be
described.

When the fourth MCU 204 accesses the queue 213, the
control part 401 in the queue 213 loads the entry number “3”
stored in the offset register 403. Then, the control part 401
in the queue 213 loads from the storage part 402 the fourth
execution start address No. “FF” (hexadecimal number)
stored at the loaded entry number “3” in the storage part 402,
and transmits the fourth execution start address No. “FF” to
the fourth MCU 204. Upon receiving it, the fourth MCU 204
executes the jump instruction next to the “queue read
instruction” in the program memory 212 to jump to the
above-described received fourth execution start address No.
“FF” (hexadecimal number). Then, the fourth MCU 204
executes the stop instruction at the fourth execution start
address No. “FF” (hexadecimal number) to stop the pro-
cessing and perform nothing. As described above, if all of
the four MCUs 201 to 204 are normal, the fourth MCU 204
performs nothing, so that the data processor can perform the
same sampling processing (data processing) as that in the
first embodiment.

In contrast, when one of the four MCUs 201 to 204 fails,
the three normal MCUs access the queue 213 and the one
failed MCU does not access the queue 213. As a result, the
one failed MCU performs nothing and the three normal
MCUs can perform the same sampling processings (data
processings) as those of the MCUs 201 to 203 in the first
embodiment. Note that though the case where one redundant
MCU 204 is provided with respect to the required number of
MCUs has been described as an example in this embodi-
ment, two or more redundant MCUs may be provided.

According to this embodiment, even if a failed MCU
arises among the plurality of MCUs, the remaining normal
MCUs can perform normal sampling processings (data
processings). Providing equal to or more than required
number of MCUs enables improvement of fault tolerance.

It should be noted that the above embodiments merely
illustrate concrete examples of implementing the present
invention, and the technical scope of the present invention is

10

15

20

25

30

35

40

45

50

55

60

65

10

not to be construed in a restrictive manner by these embodi-
ments. That is, the present invention may be implemented in
various forms without departing from the technical spirit or
main features thereof.

It is possible to make timings for a plurality of controllers
to execute a data processing instruction different with a
simple configuration.

All examples and conditional language provided herein
are intended for the pedagogical purposes of aiding the
reader in understanding the invention and the concepts
contributed by the inventor to further the art, and are not to
be construed as limitations to such specifically recited
examples and conditions, nor does the organization of such
examples in the specification relate to a showing of the
superiority and inferiority of the invention. Although one or
more embodiments of the present invention have been
described in detail, it should be understood that the various
changes, substitutions, and alterations could be made hereto
without departing from the spirit and scope of the invention.

What is claimed is:

1. A data processor, comprising:

a plurality of controllers that process data;

a program memory that stores a standby instruction and a
data processing instruction at a plurality of addresses
respectively; and

a queue that stores different execution start addresses for
the plurality of controllers,

wherein after the plurality of controllers sequentially
access the queue, the plurality of controllers acquire the
different execution start addresses from the queue in an
order of the sequential access, start execution of
instructions from the acquired different execution start
addresses in the program memory, and execute the data
processing instruction and execute the standby instruc-
tion the number of times different for each of the
controllers.

2. The data processor according to claim 1,

wherein the plurality of controllers are mutually same in
period of repeatedly executing the data processing
instruction.

3. The data processor according to claim 1,

wherein the queue comprises:

a storage part that stores the different execution start
addresses for the plurality of controllers at a plurality of
entry numbers;

an offset register that stores the entry number in the
storage part; and

a control part that reads, when sequentially accessed from
the plurality of controllers, the execution start address
from the entry number stored in the offset register in the
storage part, outputs the read execution start address to
the accessing controller, and overwrites the entry num-
ber stored in the offset register with a next entry
number.

4. The data processor according to claim 3,

wherein when the control part is accessed from the
controller, the control part increments the entry number
stored in the offset register.

5. The data processor according to claim 1,

wherein the program memory stores the data processing
instruction at a first execution start address, and stores
the standby instruction at a second execution start
address,

wherein a first controller of the plurality of controllers
starts execution from the data processing instruction
stored at the first execution start address, and

US 9,459,870 B2

11

wherein a second controller of the plurality of controllers
starts execution from the standby instruction stored at
the second execution start address, and then executes
the data processing instruction stored at the first execu-
tion start address being an address next to the second
execution start address.

6. The data processor according to claim 5,

wherein the program memory stores the standby instruc-
tion at a third execution start address, and

wherein a third controller of the plurality of controllers
starts execution from the standby instruction stored at
the third execution start address, then executes the
standby instruction stored at the second execution start
address being an address next to the third execution
start address, and then executes the data processing
instruction stored at the first execution start address
being an address next to the second execution start
address.

7. The data processor according to claim 5,

wherein the program memory stores the standby instruc-
tion at an address next to the first execution start
address, and stores an instruction to jump to the first
execution start address at an address next thereto.

8. The data processor according to claim 5,

wherein the program memory stores a stop instruction at
a fourth execution start address, and

wherein a fourth controller of the plurality of controllers
executes the stop instruction stored at the fourth execu-
tion start address.

#* #* #* #* #*

10

15

20

25

30

12

